CSE solutions
ConstrainedStrategicEquilibrium.CSESolution — Typeabstract type CSESolutionBase type for all CSE solutions.
ConstrainedStrategicEquilibrium.SymmetricCSESolution — Typemutable struct SymmetricCSESolution <: ConstrainedStrategicEquilibrium.CSESolutionContains the solution to the CSE problem.
cse::DataFrames.DataFrame: ADataFramecontaining the CSE and BNE evaluated at the given points. Columns names arex,CSE(x)andBNE(x).mse::Float64: Mean squared error of the CSE compared to the BNEresid::Float64: Norm of the derivativesknot::DataFrames.DataFramealph_bet::DataFrames.DataFramex_f::DataFrames.DataFramesuccess::Bool: Whether the calculation was successful or notc_1::Float64: Stop criteria C_1 (comparison of the CSE at the current value of n with the CSE at the previous value of n)c_2::Float64: Stop criteria C_2 (norm of the residual)problem::ConstrainedStrategicEquilibrium.SymmetricCSEProblem: The problem that this solution was generated forn::Int64: The value of n used in this solutionu::Array{Float64}: The data used in generating the solutionsolver_solution::Union{Nothing, SciMLBase.NonlinearSolution}: The solution object returned by the solver
ConstrainedStrategicEquilibrium.AsymmetricCSESolution — Typemutable struct AsymmetricCSESolution <: ConstrainedStrategicEquilibrium.CSESolutionContains the solution to the asymmetric CSE problem.
cse::DataFrames.DataFrame: ADataFramecontaining the CSE and BNE evaluated at the given pointsresid::Float64: Norm of the derivativesknot::Dict{Symbol, DataFrames.DataFrame}: The knots for both biddersalph_bet::Dict{Symbol, DataFrames.DataFrame}: Alpha and beta values for the piecewise linear functions for both biddersx_f::Dict{Symbol, DataFrames.DataFrame}: x values and derivatives at the final pointnorm_derivatives::Dict{Symbol, Float64}: Norm of the derivatives for each playersuccess::Bool: Whether the calculation was successful or notnfeval::Int64: Number of function evaluationsnjacs::Int64: Number of Jacobians created during the solvenfactors::Int64: Number of factorisations of the Jacobian required for the solvensolve::Int64: Number of linear solves required for the solvensteps::Int64: Total number of iterations for the nonlinear solverc_1::Dict{Symbol, Float64}: Stop criteria C_1 (comparison of CSE with previous n value) for each playerc_2::Float64: Stop criteria C_2 (norm of the residual)problem::ConstrainedStrategicEquilibrium.AsymmetricCSEProblem: The problem that this solution was generated forn::Int64: The value of n used in this solutionu::Array{Float64}: The data used in generating the solutionsolver_solution::Union{Nothing, SciMLBase.NonlinearSolution}: The solution object returned by the solver